This is default featured slide 1 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 2 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 3 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 4 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

This is default featured slide 5 title

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.This theme is Bloggerized by Lasantha Bandara - Premiumbloggertemplates.com.

Friday, April 6, 2012

Teori Atom Bohr serta Kelebihan dan Kekurangannya



”Bohr menyatakan bahwa elektron-elektron hanya menempati orbit-orbit tertentu disekitar inti atom, yang masing-masing terkait sejumlah energi kelipatan dari suatu nilai kuantum dasar. (John Gribbin, 2002)”

Model Atom Bohr
Model Bohr dari atom hidrogen menggambarkan elektron-elektron bermuatan negatif mengorbit pada kulit atom dalam lintasan tertentu mengelilingi inti atom yang bermuatan positif. Ketika elektron meloncat dari satu orbit ke orbit lainnya selalu disertai dengan pemancaran atau penyerapan sejumlah energi elektromagnetik hf.
Menurut Bohr :

Ada aturan fisika kuantum yang hanya mengizinkan sejumlah tertentu elektron dalam tiap orbit. Hanya ada ruang untuk dua elektron dalam orbit terdekat dari inti. (John Gribbin, 2005)”

Model Bohr dari atom hidrogen menggambarkan elektron-elektron bermuatan negatif mengorbit pada kulit atom dalam lintasan tertentu mengelilingi inti atom yang bermuatan positif. Ketika elektron meloncat dari satu orbit ke orbit lainnya selalu disertai dengan pemancaran atau penyerapan sejumlah energi elektromagnetik hf.

Gambar 1. Model Atom Bohr


Model ini adalah pengembangan dari model puding prem (1904), model Saturnian (1904), dan model Rutherford (1911). Karena model Bohr adalah pengembangan dari model Rutherford, banyak sumber mengkombinasikan kedua nama dalam penyebutannya menjadi model Rutherford-Bohr.
Kunci sukses model ini adalah dalam menjelaskan formula Rydberg mengenai garis-garis emisi spektral atom hidrogen, walaupun formula Rydberg sudah dikenal secara eksperimental, tetapi tidak pernah mendapatkan landasan teoritis sebelum model Bohr diperkenalkan. Tidak hanya karena model Bohr menjelaskan alasan untuk struktur formula Rydberg, ia juga memberikan justifikasi hasil empirisnya dalam hal suku-suku konstanta fisika fundamental.
Model Bohr adalah sebuah model primitif mengenai atom hidrogen. Sebagai sebuah teori, model Bohr dapat dianggap sebagai sebuah pendekatan orde pertama dari atom hidrogen menggunakan mekanika kuantum yang lebih umum dan akurat, dan dengan demikian dapat dianggap sebagai model yang telah usang. Namun demikian, karena kesederhanaannya, dan hasil yang tepat untuk sebuah sistem tertentu, model Bohr tetap diajarkan sebagai pengenalan pada mekanika kuantum.


 

Gambar 2. Model Bohr untuk atom hydrogen
Keterangan 
1.    Lintasan yang diizinkan untuk elektron dinomori n = 1, n = 2, n =3 dst. Bilangan ini dinamakan bilangan kuantum, huruf K, L, M, N juga digunakan untuk menamakan lintasan
2.   Jari-jari orbit diungkapkan dengan 12, 22, 32, 42, …n2. Untuk orbit tertentu dengan jari-jari minimum a0 = 0,53 Ã…. Jika elektron tertarik ke inti dan dimiliki oleh orbit n, energi dipancarkan dan energi elektron menjadi lebih rendah.
Bila elektron menempati orbit pertama (n=1), dikatakan bahwa atom hidrogen dalam keadaan dasar(ground state) karena atom ini mempunyai energi terendah yang umumnya dicapai pada temperatur kamar untuk hampir sebagian besar unsur maupun molekul. Untuk keadaan tingkat energi yang lebih tinggi, yaitu n>1 untuk atom hidrogen, dikatakan atom dalamkeadaan tereksitasi yang tentunya relatif kurang stabil daripada keadaan dasarnya.


Gambar 3. Tingkat-tingkat energi atom Hidrogen
Kelemahan teori atom Rutherford yang diperbaiki oleh Neils Bohr yaitu :
a. Elektron-elektron yang mengelilingi inti mempunyai lintasan dan energi tertentu.

b. Dalam orbital tertentu, energi elektron adalah tetap. Elektron akan menyerap energi jika berpindah ke orbit yang lebih luar dan akan membebaskan energi jika berpindah ke orbit yang lebih dalam


Kelebihan model atom Bohr

Atom terdiri dari beberapa kulit/subkulit untuk tempat berpindahnya electron dan atom membentuk suatu orbit dimana inti atom merupakan positif dan disekelilingnya terdapat elektron.



Kelemahan model atom Bohr

a. Tidak dapat menjelaskan efek Zeeman dan efek Strack.
b. Tidak dapat menerangkan kejadian-kejadian dalam ikatan kimia dengan baik, pengaruh medan magnet terhadap atom-atom, dan spektrum atom yang berelektron lebih banyak.


Tentang Phytagoras

Phytagoras (580 - 475 SM)

Pythagoras
(580 - 475 SM)
Pencetus sekaligus penguasa nisbah dan segitiga dialah Phytagoras, ilmuwan ini terkenal akan jasanya dibidang matematika, khususnya pada Rumus Segitiga. Beliau menciptakan rumus phytagoras yang kemudian sangat sering digunakan dalam proses pembelajaran di Sekolah, berikut kami uraikan profil tentang beliau.

“Apabila bilangan mengatur alam semesta, Bilangan adalah kuasa yang diberikan kepada kita guna mendapatkan mahkota, untuk itu kita menguasai bilangan.
If “Number rules the universe, Number is me"
PHYTAGORAS.


Masa kecil
Pythagoras lahir di pulau Samos, Yunani selatan sekitar 580 SM (Sebelum Masehi). Dia sering melakukan perjalanan ke Babylon, Mesir dan diperkirakan pernah sampai di India. Di Babylon, teristimewa, Pythagoras menjalin hubungan dengan ahli-ahli matematika. Setelah lama menjelajah pulau kecil, Pythagoras meninggalkan tanah kelahirannya dan pindah ke Crotona, Italia. Diperkirakan Pythagoras sudah melihat 7 keajaiban dunia (kuno), dimana salah satunya adalah kuil Hera yang terletak di kota kelahirannya. Sekarang, kuil Hera sudah runtuh dan hanya tersisa 1 pilar yang tidak jauh dari kota Pythagorian (namanya dipakai untuk mengenang putra terbaiknya). Menyeberangi selat dan beberapa mil ke utara adalah Turki, terdapat keajaiban lain yaitu: Ephesus.
Pythagoras adalah anak Mnesarchus, seorang pedagang yang berasal dari Tyre. Pada usia 18 tahun dia bertemu dengan Thales. Thales, seorang kakek tua, mengenalkan matematika kepada Pythagoras lewat muridnya yang bernama Anaximander, namun yang diakui oleh Pythagoras sebagai guru adalah Pherekydes.
Pythagoras meninggalkan Samos pada tahun 518 SM. Tidak lama kemudian dia membuka sekolah di Croton yang menerima murid tanpa membedakan jenis kelamin. Sekolah itu menjadi sangat terkenal bahkan Pythagoras akhirnya menikah dengan salah satu muridnya. Gambaran rinci tentang Pythagoras tidak terlalu jelas. Dikatakan setelah itu, dia pergi ke Delos pada tahun 513 SM untuk merawat penolong sekaligus gurunya, Pherekydes. Pythagoras menetap di sana sampai dia meninggal pada tahun 475 SM. Sepeninggalnya, sekolah Croton berjalan terseok-seok dan banyak konflik internal, tetapi dapat terus berjalan sampai 500 SM sebelum menjadi alat politik.
Bagaimana Pythagoras menciptakan kultus terhadap angka?
Angka adalah “dewa”
Matematika dan “mitos-mitos” palsu tentang angka tidak dapat dipisahkan. Setiap angka adalah simbol atau melambangkan sesuatu yang terkait dengan metafisik adalah hal lumrah di Cina. Pythagoras pun tidak luput dari “perangkap” mitos tentang angka. Dia mengajarkan bahwa: angka satu untuk alasan, angka dua untuk opini, angka tiga untuk potensi, angka empat untuk keadilan, angka lima untuk perkawinan, angka tujuh untuk rahasia agar selalu sehat, angka delapan adalah rahasia perkawinan. Angka genap adalah wanita dan angka ganjil/gasal adalah pria. “Berkatilah kami, angka dewa,” adalah kutipan dari para pengikut Pythagoras yang memberi perlakuan khusus terhadap angka empat,”yang menciptakan dewa-dewa dan manusia, O tetraktys suci yang mengandung akar dan sumber penciptaan yang berasal dari luar manusia.
Pemujaan angka seperti layaknya tukang sihir dengan bola kristalnya barangkali – di kemudian hari, mendasari para matematikawan setelah Pythagoras. Ucapan Plato “Tuhan memahami geometri” atau kutipan Galileo “Buku terbesar tentang alam ditulis dengan simbol-simbol matematika.” Apakah itu termasuk ilmu sihir atau matematika. Yang jelas matematika lebih sulit untuk dipahami.
Hubungan matematika dengan musik dekat sekali. Tidaklah mengherankan apabila Pythagoras juga mampu menjadi seorang musisi. Mitos bilangan Pythagoras terkandung lewat “keajabiban” pentagram. Bentuk segi-lima yang makin lama makin kecil sampai takterhingga.


Pythagoras sebagai pemusik
Pythagoras juga dikenal sebagai musisi berbakat, seorang pemain lira. Penemuan musik terkait dengan matematika diawali ketika Pythagoras bermain monokord, sebuah kotak dengan bentangan tali-tali di atas salah satu sisinya. Dengan menggerakkan jari naik dan turun pada garis-garis yang sengaja dibuat, Pythagoras mengenali bahwa suara yang dihasilkan dapat diperkirakan. Ketika bagian tengah ditekan, setiap bagian atas tali dan bawah tali menghasilkan nada sama: nada yang tepat 1 oktaf * lebih tinggi dibandingkan apabila monokord tidak ditekan. Dengan membagi monokord dengan nisbah 3/4 dan 2/5, ternyata setiap nisbah menghasilkan nada yang berbeda, merdu atau fals. Baginya, harmoni musik adalah aktivitas matematika. Harmoni dari monokord adalah harmoni matematika – dan harmoni alam semesta. Pythagoras menyimpulkan bahwa nisbah tidak hanya berlaku pada musik tetapi juga pada pelbagai jenis keindahan lain. Para pengikut Pythagoras menyimpulkan bahwa nisbah dan proporsi mengendalikan keindahan musik, kecantikan fisik dan keanggunan matematika.
Contoh: sebuah tali panjang yang menghasilkan nada C, kemudian 16/15 dari panjang tali C menghasilkan notasi B; 6/5 panjang tali C menghasilkan notasi A, 4/3 panjang tali C menghasilkan notasi G; 3/2 panjang tali C menghasilkan notasi F; 8/5 panjang tali C menghasilkan notasi E; 16/9 panjang tali C menghasilkan notasi D dan 2/1 panjang tali C menghasilkan notasi C rendah.
Penelitian tentang suara mencapai puncaknya pada abad 19 setelah John Fourier mampu membuktikan bahwa semua suara – instrumental maupun vokal – dapat dijabarkan dengan matematika, yaitu jumlah fungsi-fungsi Sinus sederhana. Menurutnya, suara mempunyai 3 kategori – pitch, loudness dan quality. Penemuan Fourier ini memungkinkan ketiga kategori tersebut digambar dan dibedakan. Pitch terkait dengan frekuensi kurva, loudness terkait dengan amplitudu dan quality terkait dengan bentuk dari fungsi periodik. Lewat motto “Angka adalah dewa”, Pythagoras mampu menggalang sejumlah pengikut.

Para pengikut Pythagoras (Pythagorean)
Pythagoras barangkali dapat disebut sebagai pemikir new ages pada jamannya. Dia juga seorang orator ulung, intelektual terkenal sekaligus guru yang kharismatik. Semua itu membuat banyak orang ingin belajar darinya. Tidaklah mengherankan apabila tidak lama kemudian dia mempunyai banyak pengikut dan disusul dengan mendirikan sekolah.
Falsafah dasar yang paling penting bagi Pythagoras adalah: angka. Yunani mewarisi pemahaman tentang angka dari geometrik Mesir. Hasilnya, ahli matematika Yunani tidak dapat membedakan antara bentuk (shapes) dengan bilangan (numbers). Pada saat ini untuk membuktikan theorema matematika biasa digunakan gambar-gambar yang digambar dengan menggunakan sejenis penggaris yang terbuat dari logam atau batu dan kompas.
Nisbah-nisbah adalah kunci untuk memahami alam, Pythagorean dan matematikawan lebih modern menghabiskan banyak energi dengan menggali lebih dalam teori-teori mereka. Akhirnya mereka memilah proporsi ke dalam sepuluh kategori berbeda yang disebut dengan titik tengah harmonis (harmonic means). Salah satu dari titik tengah ini mengandung angka paling “cantik” di dunia: nisbah emas (golden ratio). Tidak ada yang istimewa dari nisbah emas ini, tetapi sesuatu yang terinspirasi oleh nisbah emas tampaknya merupakan obyek-obyek yang sangat indah. Bahkan sampai saat ini, artis dan arsitek secara intuitif mengetahui bahwa obyek-obyek yang mengandung nisbah emas nampak artistik. Dan nisbah ini mempengaruhi banyak pekerjaan pada bidang seni dan arsitektur. Parthenon, kuil Athena terbesar, dibangun dengan kaidah nisbah emas ada pada setiap aspek kontruksinya. Dalam pikiran Pythagorean, nisbah mengendalikan alam semesta dan berarti sahih bagi seluruh dunia Barat pula.

Cacat pada doktrin Pythagorean
Angka nol tidak mendapat tempat dalam kerangka kerja Pythagorean. Angka nol tidak ada atau tidak dikenal dalam kamus Yunani. Menggunakan angka nol dalam suatu nisbah tampaknya melanggar hukum alam. Suatu nisbah menjadi tidak ada artinya karena “campur tangan” angka nol. Angka nol dibagi suatu angka atau bilangan dapat menghancurkan logika. Nol membuat “lubang” pada kaidah alam semesta versi Pythagorean, untuk alasan inilah kehadiran angka nol tidak dapat ditolerir. Pythagorean juga tidak dapat memecahkan “problem” dari konsep matematika – bilangan irrasional, yang sebenarnya juga merupakan produk sampingan (by product) rumus: a² + b² = c². Konsep ini juga menyerang sudut pandang mereka, namun dengan semangat persaudaraan tetap dijaga sebagai sebuah rahasia. Rahasia ini harus tetap dijaga jangan sampai bocor atau kultus mereka hancur. Mereka tidak mengetahui bahwa bilangan irrasional adalah “bom waktu” bagi kerangka berpikir matematikawan Yunani.
Nisbah antara dua angka tidak lebih dari membandingkan dua garis dengan panjang berbeda. Anggapan dasar Pythagorean adalah segala sesuatu yang masuk akal dalam alam semesta berkaitan dengan kerapian (neatness), proporsi tanpa cacat atau rasional. Nisbah ditulis dalam bentuk a/b bilangan utuh, seperti: 1, 2 atau 17, dimana b tidak boleh sama dengan nol karena dengan itu akan menimbulkan bencana. Tidak perlu dijelaskan lagi, alam semesta tidak sesuai dengan kaidah tersebut. Banyak angka tidak dapat dinyatakan semudah itu ke dalam nisbah a/b. Kehadiran angka irrasional tidak dapat dihindari lagi adalah konsekuensi matematikawan Yunani.
Persegi panjang adalah bentuk paling sederhana dalam geometri, tetapi dibaliknya terkandung bilangan irrasional. Apabila anda membuat garis diagonal pada persegi panjang – muncul irrasional, dan kelak besarnya ditentukan oleh akar bilangan. Bilangan irrasional terjadi dan akan selalu terjadi pada semua bentuk geometri. Contoh lain, segi tiga siku-siku dengan panjang kedua sisi adalah satu, dapat dihitung panjang sisi lain – dengan rumus Pythagoras, yaitu: v2. Sangatlah sulit menyembunyikan hal ini bagi orang yang paham geometri dan nisbah.

Hippasus menyangkal
Rahasia ini akhirnya dibocorkan oleh seorang pengikut Pythagorean yang merasa bahwa dia harus mengungkapkan kebenaran. Hippasus adalah matematikawan yang menjadi murid sekaligus pengikut Pythagoras. Hippasus berasal dari Metapontan. Pengungkapan rahasia membuat dia dijatuhi hukuman mati. Cerita tentang bagaimana meninggalnya Hipassus ada berbagai versi. Beberapa mengatakan bahwa Hippasus ditenggelamkan di laut, sebagai konsekuensi menghancurkan teori indah dengan fakta-fakta menyesatkan. Sumber lain menyebutkan bahwa para pengikut Pythagoras mengubur dia hidup-hidup. Lainnya menyebutkan bahwa Hippasus, dibuang atau diasingkan dalam ruangan tertutup tanpa pernah bertemu orang lagi.
Tanpa usaha mengklarifikasikan mana yang benar, namun yang jelas pengungkapan oleh Hippasus ini mengoncangkan fondasi-fondasi doktrin Pythagoras. Dalam hal ini Pythagorean menanggap bahwa bilangan irrasional hanya sebagai suatu perkecualian. Mereka tidak dapat membuktikan bahwa bilangan irrasional mencemari pandangan mereka tentang alam semesta.
Meninggalnya Pythagoras
Para pengikut Pythagoras menyatakan bahwa guru mereka meninggal dengan cara yang unik. Beberapa dari mereka menyatakan Pythagoras mogok makan, sebagian lagi menyatakan bahwa dia mengurung dan berdiam diri. Cerita lain menyatakan bahwa konon rumahnya dibakar oleh para musuhnya (mereka yang merasa tersingkirkan oleh kehadiran Pythagoras di tempat itu). Semua pengikutnya ke luar dari rumah terbakar dan lagi ke segala penjuru untuk menyelamatkan diri. Massa yang membakar rumah itu kemudian membantai para pengikutnya (pythagorean) satu per satu. Persaudaraan sudah dihancurkan. Pythagoras sendiri berusaha melarikan diri tetapi tertangkap dan dipukuli. Dia disuruh berlari di suatu ladang, namun mengatakan bahwa dia lebih baik mati. Kemudian diambil keputusan bersama dan diputuskan: Pythagoras dihukum pancung di muka umum.
Meskipun persaudaraan sudah bubar dan pemimpinnya terbunuh, esensi ajaran Pythagoras terus bertahan sampai sekarang. Falsafah Barat banyak dipengaruhi oleh pemikiran Pythagoras – seperti halnya doktrin Aristoteles, ternyata mampu bertahan hampir 2 milenium. Angka nol dan bilangan irrasional bertentangan dengan doktrin tersebut, tetapi memberi landasan bagi para matematikawan berikutnya agar memperhatikan angka nol dan bilangan irrasional.
*) Oktaf artinya 8 yaitu: nada dari 1(do) sampai 1 (do tinggi) atau dari C sampai C lagi

Hasil yang Beliau Torehkan
Penemuan Pythagoras dalam bidang musik dan matematika tetap hidup sampai saat ini. Theorema Pythagoras tetap diajarkan di sekolah-sekolah dan digunakan untuk menghitung jarak suatu sisi segitiga. Sebelum Pythagoras belum ada pembuktian atas asumsi-asumsi. Pythagoras adalah orang pertama yang mencetuskan bahwa aksioma-aksioma, postulat-postulat perlu dijabarkan terlebih dahulu dalam mengembangkan geometri.
Manfaat ini, kelak, membuat matematika tetap dapat digunakan sebagai alat bantu dalam melakukan perhitungan terhadap pengamatan terhadap fenomena-fenomena alam, setelah melalui pengembangan dan penyempurnaan oleh para matematikawan setelah Pythagoras. Theorema Pythagoras mendasari adanya theorema Fermat (tahun 1620): xn + yn = zn yang baru dapat dibuktikan oleh Sir Andrew Wiles pada tahun 1994.

Berkat jasa-jasa beliau, maka beberapa perhitungan dalam matematika yang cukup rumit dapat terselesaikan.

Baca juga mengenai penjelasan rumus phytagoras.

Penjelasan tentang Kemolaran, Laju Reaksi dan Katalis


Di kelas XII SMA, kita akan membahas BAB tentang Sifat Koligatif Larutan di bab pertama, posting kali ini saya terbitkan untuk teman-teman sebagai referensi pembantu dalam proses belajar.


Kemolaran adalah salah satu cara menyatakan kepekataan larutan. Kemolaran menyatakan jumlah mol zat terlarut dalam setiap larutan. Kemolaran dinyatakan dengan lambang M. Berikut Rumus Kemolaran :

V1.M1=V2.M2
V1=Volume sebelum pengenceran(liter)
M1=Molaritas sebelum pengenceran(M)
V2=Volume sesudah pengenceran(liter)
M2=Molaritas sesudah pengenceran(M)


Contoh Soal :
1.  Sebanyak 16,4 gram Ca(NO3)dilarutkan dalam air hingga volume 250ml. Jika diketahui Mr Ca(NO3)2 = 164, tentukan Konsentrasi larutan !

Jawab :


  

2. Sebanyak 50 ml larutan HCl 0,2 M ditambah air hingga membentuk larutan HCl dengan konsentrasi 0,05 M. Hitunglah volume air yang harus ditambahkan !

Jawab :
M1 . V= M. V2
0,2 . 50 = 0,05 . V2
V= 200 ml
V air = 200-50 = 150 ml


Hubungan Kemolaran dengan Kadar Larutan

Kadar menyatakan massa zat terlarut dalam 100 gram larutan, sedangkan kemolaran menyatakan jumlah mol zat terlarut dalam setiap liter larutan. Oleh karena massa merupakan hasil kali volum dengan massa jenis, maka kemolaran larutan dapat ditentukan jika kadar dan massa jenisnya di ketahui. 

Sebaiknya Anda Tahu !
Menambahkan air ke dalam asam sulfat pekat sangat berbahaya.
Ketika mengencerkan asam sulfat pekat, kita menambahkan asam sulfat ke air, tidak sebaliknya. Hal itu karena percampuran asam sulfat dengan air sangat eksoterm dan massa jenis asam sulfat pekat lebih besar daripada air. 
Jika air ditambahkan ke dalam asam sulfat pekat akan membentuk lapisan dengan asam sulfat di lapisan bawah. Ketika asam sulfat dan air bercampur, terbentuk panas yang dapat menyemburkan air di lapisan atas. Jika asam sulfat yang ditambahkan ke dalam air, maka asam sulfat akan segera menyebar sehingga lebih aman. Namun demikian, penambahan asam sulfat ke dalam air tetap harus dilakukan secara hati-hati, sedikit demi sedikit.


LAJU REAKSI

Laju reaksi adalah perubahan konsentrasi pereaksi atau hasil reaksi tiap satuan 
waktu :
Reaksi = A + B Ã  C, dapat diartikan:
a. Berkurannya konsentrasi A dan B tiap satuan waktu
b. Bertambahnya konsentrasi C tiap satuan waktu

PERSAMAAN LAJU REAKSI
Pada reaksi: mA + nB Ã  C, persamaan laju reaksi dapat dinyatakan dengan
v = k [A]m [B]n
v = laju reaksi
k = tetapan laju reaksi
[A] = konsentrasi/molaritas A
[B] = konsentrasi/molari tas B
m = orde/tingkat reaksi terhadap A
n = orde/tingkat reaksi terhadap B
m + n = orde reaksi total


FAKTOR-FAKTOR YANG MEMPENGARUHI LAJU REAKSI 
1. LUAS PERMUKAAN SENTUH
Luas permukaan sentuh memiliki peranan yang sangat penting dalam laju reaksi, sebab semakin besar luas permukaan bidang sentuh antar partikel, maka tumbukan yang terjadi semakin banyak, sehingga menyebabkan laju reaksi semakin cepat. Begitu juga, apabila semakin kecil luas permukaan bidang sentuh, maka semakin kecil tumbukan yang terjadi antar partikel, sehingga laju reaksi pun semakin kecil. Karakteristik kepingan yang direaksikan juga turut berpengaruh, yaitu semakin halus kepingan itu, maka semakin cepat waktu yang dibutuhkan untuk bereaksi ; sedangkan semakin kasar kepingan itu, maka semakin lama waktu yang dibutuhkan untuk bereaksi. Untuk membuktikan dilakukan percobaan untuk melihat pengaruh
Luas permukaan bidang sentuh terhadap laju reaksi. Pengamatan dilakukan pada reaksi antara batu pualam (CaCO3) dengan larutan asam klorida dengan reaksi sebagai berikut :
CaCO3(s) + 2HCl(aq)  CaCl2(aq) + H2O(l) + CO2(g)


2. KONSENTRASI
Dari berbagai percobaan menunjukkan bahwa makin besar konsentrasi zat-zat yang bereaksi makin cepat reaksinya berlangsung. Makin besar konsentrasi makin banyak zat-zat yang bereaksi sehingga makinbesar kemungkinan terjadinya tumbukan dengan demikian makin besar pula kemungkinan terjadinya reaksi.

3. SUHU
Suhu juga turut berperan dalam mempengaruhi laju reaksi. Apabila suhu pada suatu rekasi yang berlangusng dinaikkan, maka menyebabkan partikel semakin aktif bergerak, sehingga tumbukan yang terjadi semakin sering, menyebabkan laju reaksi semakin besar. Sebaliknya, apabila suhu diturunkan, maka partikel semakin tak aktif, sehingga laju reaksi semakin kecil.
Pada umumnya, untuk setiap kenaikan suhu sebesar 10oC, laju reaksi akan naik menjadi dua sampai tiga kali cepat dari semula. Hal tersebut dapatdirumuskan sebagai berikut :


Keterangan :
∆v = kenaikan laju reaksi T0 = suhu awal
∆T = kenaikan suhu (100C) v0 = laju reaksi awal
Tt = suhu akhit vt = laju reaksi akhir

4. KATALIS
Katalis adalah suatu zat yang mempercepat laju reaksi kimia pada suhu tertentu, tanpa mengalami perubahan atau terpakai oleh reaksi itu sendiri. Suatu katalis berperan dalam reaksi tapi bukan sebagai pereaksi ataupun produk. Katalis memungkinkan reaksi berlangsung lebih cepat atau memungkinkan reaksi pada suhu lebih rendah akibat perubahan yang dipicunya terhadap pereaksi. Katalis menyediakan suatu jalur pilihan dengan energi aktivasi yang lebih rendah. Katalis mengurangi energi yang dibutuhkan untuk berlangsungnya reaksi.
Katalis dapat dibedakan ke dalam dua golongan utama:  katalis homogen dan katalis heterogen. Katalis heterogen adalah katalis yang ada dalam fase berbeda dengan pereaksi dalam reaksi yang dikatalisinya, sedangkan katalis homogen berada dalam fase yang sama. Satu contoh sederhana untuk katalisis heterogen yaitu bahwa katalis menyediakan suatu permukaan di mana pereaksi-pereaksi (atau substrat) untuk sementara terjerat. Ikatan dalam substrat-substrat menjadi lemah sedemikian sehingga memadai terbentuknya produk baru. Ikatan atara produk dan katalis lebih lemah, sehingga akhirnya terlepas.
Katalis homogen umumnya bereaksi dengan satu atau lebih pereaksi untuk membentuk suatu perantara kimia yang selanjutnya bereaksi membentuk produk akhir reaksi, dalam suatu proses yang memulihkan katalisnya. Berikut ini merupakan skema umum reaksi katalitik, di mana C melambangkan katalisnya:
         A + C    AC (1) 
         B + AC  AB + C (2) 
Meskipun katalis (C) termakan oleh reaksi 1, namun selanjutnya dihasilkan kembali oleh reaksi 2, sehingga untuk reaksi keseluruhannya menjadi :
         A + B + C  AB + C 


Beberapa katalis yang pernah dikembangkan antara lain berupa katalis Ziegler-Natta
yang digunakan untuk produksi masal polietilen dan polipropilen. Reaksi katalitis

yang paling dikenal adalah proses Haber, yaitu sintesis amoniak menggunakan besi biasa

sebagai katalis. Konverter katalitik yang dapat menghancurkan produk emisi kendaraan

yang paling sulit diatasi, terbuat dari platina dan rodium..
 
Demikian posting kali ini, semoga dapat bermanfaat.

Tips dan Trik Menghadapi Ujian Nasional




Cara Menghadapi UN 2012Kali ini saya akan berbagi informasi terbaru 2012 tentang tips dan cara menghadapi ujian nasional tahun 2012 untuk semua pelajar Indonesia. Untuk kalian para pelajar indonesia, kami ada sedikit coretan atau ketikan tulisan yang semoga berguna buat bagi kita semua. 
Belajar Latihan Contoh-Contoh Soal
untuk soal-soal Ujian Nasional bisa di cari di internet tapi biasanya di sekolah masing-masing ,untuk soal Ujian Nasional tahun sebelumnya akan dibagikan dan di bahas bersama gurunya.
 Perbanyaklah baca untuk mata pelajaran yang di ujikan Ujian Nasional
yang perlu kita banya pelajari jika akan menghadapi Ujian Nasional harus memperbanyak baca-baca tentang pelajaran untuk Ujian Nasional

Berdoa Kepada ALLAH SWT
Berdoa ini sangat penting sekali,karena semua yang ada di bumi ini yang ngatur cuma satu yaitu ALLAH SWT,jadi kita harus berdoa atau memohon kepadanya.

SEBELUM UJIAN
Mengingat ujian tinggal beberapa bulan lagi usahakan ketika belajar di kelas belajar kelompok atau belajar di tempat les kalian harus benar benar fokus, boleh kadang bercanda hanya sekedar untuk melepas penat dan biarlah otak kita beristirahat sejenak.
Keduanya rajin-rajinlah latihan mengerjakan soal atau ikut tryout, hal ini bisa melatih mental kita dan kita bisa tahu siapa siapa saja saingan kita, hal ini berguna banget buat menyiapkan diri waktu ujian baerlangsung, tapi jangan menyontek. kalau menyontek waktu tryout atau melihat ujian sama saja bohong buat apa ikut tryout cape cape bayarnya juga mahal pula tapi yang kalian cari hanya peringkat tinggi di tryout tadi hanya sekedar untuk gengsi, kerjakan sendiri saja apapun hasilnya ini untuk mengukur kemampuan kita sendiri.
Jangan lupa refreshing buat penyegaran otak biar tidak stres tapi jangan keterusan, usahakan refreshing ke tempat rekreasi alam bisa bersama teman atau keluarga jangan malah cuma ngenet atau maen game di rumah.
Jangan lupa olahraga biar tidak gampang sakit, rajin beribadah penting banget itu untuk mententramkan hati kita, sering sering konsultasi ke guru atau orang tua tentang pelajaran atau tentang informasi di perkuliahan.
Ketenangan Saat Mengerjakan Ujian Nasional
jangan suka tergesa-gesa dalam mengerjakan soal Ujian Nasional,jika kita tergesa-gesa pasti kita akan kurang teliti dan banyak yang akan selah dalam mengerjakan soal Ujian Nasional.


WAKTU UJIAN
Malam sebelum ujian sebaiknya jangan belajar yang terlalu berat. gunakan waktu ini hanya untuk mengingat kembali materi yang telah kita kuasai dan jangan mencoba belajar materi yang sama sekali tidak kita kuasai.
Yakinllah bahwa bekal yang kalian siapkan untuk ujian sudah cukup dan selalu berdoa.
Bangunlah lebih awal pada hari H sekedar hanya untuk sholat agar di beri kekuatan yang besar untuk menghadapi soal soal hari ini sesulit apapun itu bagi yang muslim.
Jangan lupa sarapan sebelum berangkat dan minta doa restu dari orangtua di jamin bakal tenang dan jangan sampai telat.
Pastikan semua perlenkapan ujian telah siap jangan sampai ada yang ketinggalan, kalau ada hal yang terlupa bisa di pastikan hal ini akan membuat kalian panik dan jadi down sebelum ujian.
Waktu terima soal ujian cobalah untuk tersenyum seburuk apapun soalnya nanti dan sejelek apaun penjaga di ruang ujiannya, kalau bisa ketawa ketawa saja di buat rileks.
jangan lupa berdo’a sebelum mengerjakan, nikmatilah detik detik ketika kalian mengerjakan soal demi soal, jangan di buat stres dengan soal soal yang sulit di buat senyum saja ketika ada soal sulit, di hitung pelan pelan kalau tidak bisa tinggalin saja ganti soal yang lain, tapi ingat waktu, setelah selesai jangan lupa mengecek kelengakapan identitas di lembar jawaban, ini penting banget hukumnya fardhu’ain jgn lupa berdo’a setelah selesai.

UN 2012SETELAH UJIAN
Jangan pernah membahas soal yang telah kalian kerjakan karena hal ini tidak akan merubah apapun justru kalian akan kecewa ketika nantinya kalian tahu ada jawaban kalian yang salah (so keep convident but don’t over convident).
Ingat yang mengoreksi lembar jawaban kita sebenarnya bukanlah scanner atau petugas koreksi atau yang lainnya, yang mengoreksi jawaban kita sebenernya adalah Tuhan kita, Allah SWT. Dia menilai apakah kita pantas mendapatkan hasil yang maksimal atau tidak Allah akan menilai usaha kita dalam menempuh ujian ini.
Hal yang terpenting adalah usaha kita soal hasilnya kita serahkan kepada Yang Maha Pengasih dan Maha Penyayang, Dia lah yang tahu yang terbaik untuk kita.

Demikian posting tentang tips dan trik untuk menghadapi ujian nasional 2012, semoga bermanfaat untuk kita semua yang akan menghadapi UN 2012 ini, dan saya ikut berdo’a semoga seluruh pelajar Indonesia bisa lulus semua 100 %. Aamiin.
Dan 1 pesan dari saya, selalu sholat dan berdo’a supaya dimudahkan kita dalam mengahadapi UN besok nanti.... Description: :-)